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Background
Multiple Sclerosis (MS) and type 1 diabetes mellitus (T1DM) are
both autoimmune diseases with inflammatory, auto‐antigen‐
specific T‐cell, and decreased T‐cell suppressor components, but
they affect different organs and have marked differences in
pathogenesis and clinical manifestations. Despite this, they co‐
occur more often than expected by chance, pointing to shared
susceptibility factors. Low sun exposure and low vitamin D (vitD)
levels are common risk factors, as demonstrated by clear
latitude gradients of disease prevalence.

Figure 1: Type I Diabetes Mellitus (A, ref 12)
and Multiple Sclerosis (B, ref 13) both display
a latitude gradient of disease prevalence.

Genome‐wide association studies and candidate gene studies
have identified shared genetic risk factors, including variants in
the vitamin D pathway gene, CYP27B1. In addition, both MS and
T1DM risk variants are over‐represented in the vitD receptor
(VDR) cistrome of myeloid cells (p<0.005, FDR<0.05). There are
also several marked differences between MS and T1DM in terms
of genetic and environmental risk. For instance, the
HLADRB1*1501 allele confers protection in T1DM (OR 0.03) but
has an opposing effect on risk in MS where it is a risk allele of
large effect present in over 55% of individuals with MS (OR
3.92). In addition, MS and T1DM are associated with different
viral infections; MS is associated with EBV infection, whereas

T1DM is associated with coxsackievirus B1 infection.

Methods
As associated SNPs from different studies may tag the same
genetic regions, we compared linkage disequilibrium (LD)
regions around each MS and T1DM associated SNP using the
rAggr software program (LD cuttoff of R2>0.8, maximum
distance 500kb) to better define the shared risk genes.

We also sought rare variants (prevalance <0.01 in 1000 genome
project) that may be contributing to disease risk using whole
genome sequencing (WGS) of genomic DNA from individuals
with both T1D and MS. Sequencing libraries were prepared
using the TruSeq DNA PCR‐free Library Preparation Kit and

sequenced on the Illumina HiSeq X Ten platform. Multiple
algorithms were used to filter the variants for impact on the
genome including CADD, polyphen and SIFT. The overlap with
the identified MS and T1DM risk genes was also determined. In
addition, individuals were genotyped for HLADRB1*1501 using
the tagging SNP rs9271366 and confirmed by sanger
sequencing.

Results

Table 1: Individuals with both MS and T1DM
genotyped using whole genome sequencing.

Figure 1: Immune Cell subset gene expression by RNAseq of genes associated with risk of both 
Multiple Sclerosis and Type 1 Diabetes Mellitus. There are 15 candidate genes corresponding to 6 loci with risk SNPS 
in strong LD (R2>0.8) and a further 5 genes (indicated by the $ symbol) where the risk SNPs for the 2 diseases are not in strong LD 
(R2<0.8).  This pattern of gene expression across the different immune cell subsets indicates that the shared genetic risk across MS and 
T1DM likely involves multiple arms of the immune system. 

All 5 individuals with both MS and T1DM sequenced were
homozygous negative for the HLADRB1*1501 allele. This
absence is significantly different than the prevalence of
this allele in the MS population (Chi‐Square p= 0.038).

Table 2: Summary of rare variants
identified by whole genome sequencing
of individuals with both MS and T1DM.

The WGS identified several high impact rare variants in
each of the individuals including variants resulting in loss
or gain of stop codons, changes in initiator codon, splice
donor or splice acceptor site changes. A higher number of
medium Impact rare variants were identified and these
included variants resulting in missense mutations or splice
region changes. Three of the 5 individuals had rare variants
identified in genes associated with T1DM risk and all 5 had
rare variants identified in MS risk genes.

Conclusions
These data implicate shared, specific immune
dysregulation between T1DM and MS. Further study into
the risk genes common to these two diseases may provide
additional insight into the autoimmune process and reveal
common pathways for therapeutic targeting. Downstream
analysis of the consequence of the rare variants identified
in by WGS may provide novel explanations as to why these
individuals have developed multiple autoimmune diseases.
The absence of the DRB1*1501 allele in individuals with
both MS and T1DM warrants further investigation in a
larger cohort and if validated may provide a link between
the HLA genotype and the differences in pathogenesis and
clinical manifestation in the two diseases.
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p124 17 428 203 50 70 104 95

PLEKHG5, 
PTPRK, 

RPS6KB1, 
TNFAIP3

GLIS3, 
GSDMB

p150 23 529 260 75 75 151 111 EVI5, IL7R FUT2, IL7R

p238 23 424 213 65 75 126 87 TET2, WWOX
DGKA, 
GLIS3, 
PTPN22

p901 18 400 204 53 74 128 75
CYP24A1, 
PLEKHG5, 
TNFRSF1A

p902 27 413 223 61 77 114 72
PTPRK, 

SLC2A4RG
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Patient Age Sex DRB1*1501 status
p124 23 M ‐/‐
p150 30 M ‐/‐
p238 38 M ‐/‐
p901 38 F ‐/‐
p902 35 F ‐/‐
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